
Secure	
 Drupal	
 Development	

Steven	
 Van	
 den	
 Hout	

@stevenvdhout

http://dgo.to/@svdhout

Steven Van den Hout

IS DRUPAL SECURE?
1

MANY EYES MAKE FOR SECURE CODE

IS OPEN SOURCE SECURE?

-  Security by obscurity
-  Open code does not make it easier for hackers
-  Open Source makes people look at it
-  Popularity gets more eyes and more peer-reviews

•  Bad open-source software as bad
•  as bad private software.

VULNERABILITIES

OWASP

-  Injection
-  Cross Site Scripting - XSS
-  Broken Authentication and Session Management
-  Cross Site Request Forgery - CSRF
-  Security Misconfguration
-  Failure to Restrict URL Access	

-  Access bypas

REPORTED VULNERABILITIES

IS DRUPAL SECURE?

-  Safe by design (Core and API)
-  Security Team
-  Highly organised
-  Documented process for Security Advisories and Updates
-  Thousands of maintainers, users and experts
-  Support: Drupal 6/7, Core & Contributed Modules

KEEP YOUR

DRUPAL WEBSITE

SECURE
 2

SECURITY IS A PROCESS

NOT AN EVENT

•  FROM REPORTED ISSUE TO SECURITY UPDATE

A DRUPAL SECURITY RELEASE

YOU’RE SAFE UNTIL RELEASE SECURITY UPDATE

PRIVATE DISCLOSURE

UPDATES	

Always stay up to date
-  Keep up with latest security releases

Update Workflow
-  Hacked module + diff
-  Drush up

KNOW WHEN AN UPDATE IS NEEDED

UPDATE MANAGER

INSIGHT INTO HEALTH OF YOUR DRUPAL WEBSITE

STATUS MONITORING

Tools
-  Droptor.com (https://drupal.org/project/droptor)
-  Acquia Insight (https://drupal.org/project/

acquia_connector)
-  Nagios (https://drupal.org/project/nagios)
-  Drupalmonitor.com (https://drupal.org/project/

drupalmonitor)
-  …

BUILD A SECURE

 DRUPAL WEBSITE
3

CONTRIBUTED

MODULES

CONTRIBUTED MODULES

Quality assurance
-  Usage
-  Number of open issues
-  Closed/Open ratio
-  Response time
	

Good quality usually means good security	

	

Manual code reviews for less used modules	

	

	

UPDATES	

Always stay up to date
-  Keep up with latest security releases

Update Workflow
-  Hacked module + diff
-  Drush up

PATCHES	

Contrib patches	

Read the entire issue

	

	

Commit custom patches	

Help out	

Feedback from other users (maintainers)	

Patch might get commited	

	

	
 Patch management	

Move module to patched	

Create a patches.txt	

Keep patches	

	

	

CUSTOM

MODULES

SECURITY PYRAMID	

Menu & Node Access	

Form API	

DB API	

Theme	

	
 	
 	

HACKS

AND HOW TO PREVENT THEM

SQL INJECTION	

"SELECT * FROM user WHERE name = '$name'"	

	

"SELECT * FROM user WHERE name = 'Robert'; DROP TABLE students;'"	

	

	

h4p://xkcd.com/327/	

SQL INJECTION

	

Placeholders	

	

	
 db_query(“SELECT * FROM users WHERE name = :user”, array(':user' => $user);	

	

	

Dynamic Queries	

	

	

	

$query = db_select('user', 'u')	

 ->fields('u')	

 ->where('name', $user)	

 ->execute();	

XSS (cross site scripting)	

EXECUTING ABRITRARY JAVASCRIPT CODE ON THE PAGE

XSS (cross site scripting)	

User Input	

	

	
 Title	

Body	

Log message	

Url	

Post	

User-Agent	

Headers	

	

	

XSS (cross site scripting)	

Validate forms	

	

	
 User input should never contain javascript	

	

	

Form api	

	

	

	

Never use $_POST variables	

$form_state['values']	

	

Form caching	

XSS (cross site scripting)	

Input formats	

Never use full_html	

	

	

Filter Functions	

	

	

	

	

	

check_url()	

check_plain()	

check_markup()	

filter_xss()	

XSS (cross site scripting)	

h4p://drupalscout.com/knowledge-­‐base/drupal-­‐text-­‐filtering-­‐cheat-­‐sheet-­‐drupal-­‐6	

XSS (cross site scripting)	

Functions	

	

	
 t()	

 	

l()

drupal_set_title()	

	

	

	

@var => plain text	

%var => plain text	

!var => full html!	

CSRF (cross site request forgery)	

Taking action without confirming intent	

	

	

Delete user 1	

	

	
 Image Tag	

	

	

	

	

A hacker posts a comment to the administrator.	

When the administrator views the image, user 1 gets deleted	

	

	

CSRF (cross site request forgery)	

Token (aka Nonce)	

	

	

ACCESS BYPASS	

VIEW CONTENT A USER IS NOT SUPPOSED TO

ACCESS BYPASS	

View content a user is not supposed to	

	

	

$query = db_select('node', 'n')->fields('n');	

Also shows nodes that user doesn't have acces to	

	

	

$query->addTag('node_access')	

	

	

	

Rewrite the query based on the node_access table	

ACCESS BYPASS	

Bad custom caching	

	

	

Administrator visits a block listing nodes.	

The block gets cached	

	

The cached block with all nodes is shown to the anonymous user	

	

Add role id to custom caching	

ACCESS BYPASS	

Rabbit_hole module	

	

	

Rabbit Hole is a module that adds the ability to control what should happen
when an entity is being viewed at its own page.

Page manager can do the same.	

Field access	

	

	

	

$form['#access'] = custom_access_callback();	

Menu access	

	

	

	

$item['access callback'] = 'custom_access_callback',	

CORRECT USE OF API	

Form API	

Validation
Form state
Drupal_valid_token

	

	
 DB API	

db_select, db_insert, placeholders	

$query->addTag(‘node_access’);	

	

	
 Filter	

check_url, check_plain, check_markup, filter_xss, …	

t(), l(), drupal_set_title(), …	

	

	

THEMES

THEMES	

Themer not responsible	

	

	
 Preprocess functions	

	

	

CONFIGURATION

PERMISSIONS

	

Permission management	

	

	
 If Joe from advertising can give the full html filter format to anonymous user,
don't bother to think about security	

	

	

Split up permissions	

	

	
 The default permissions don't cover every use case	

	

	

PERMISSIONS

	

FILTER FORMATS	

Never use full_html	

	

	
 Use filtered_html instead.	

	

	

Never use phpfilter	

	

	
 Use a custom module for code	

Versioning	

Bad performance (eval)	

	

	

CHECKLIST

CHECKLIST	

Never use	

full_html
Php filter	

	

	

Permissions	

	

	

	

	

	

Trusted users only
Split up permissions
	

API
	

	

	

	

	

	

Preprocess functions
check_plain, filter_xss
DB API
Form API
Tokens
Menu/Node Access
	

GREAT	

HOW ABOUT DRUPAL 8?

FURTHER READING

FURTHER READING	

Books	

Cracking Drupal !!	

Pro Drupal Development

Online	

https://drupal.org/writing-secure-code	

https://drupal.org/node/360052	

http://munich2012.drupal.org/program/sessions/think-hacker-secure-drupal-code.html	

http://drupalscout.com/knowledge-base	

Video	

How to avoid All your base are belong to us (drupalcon Denver)	

	

	

