
Secure	 Drupal	 Development	
Steven	 Van	 den	 Hout	

@stevenvdhout

http://dgo.to/@svdhout

Steven Van den Hout

IS DRUPAL SECURE?1

MANY EYES MAKE FOR SECURE CODE

IS OPEN SOURCE SECURE?

-  Security by obscurity
-  Open code does not make it easier for hackers
-  Open Source makes people look at it
-  Popularity gets more eyes and more peer-reviews

•  Bad open-source software as bad
•  as bad private software.

VULNERABILITIES

OWASP

-  Injection
-  Cross Site Scripting - XSS
-  Broken Authentication and Session Management
-  Cross Site Request Forgery - CSRF
-  Security Misconfguration
-  Failure to Restrict URL Access	
-  Access bypas

REPORTED VULNERABILITIES

IS DRUPAL SECURE?

-  Safe by design (Core and API)
-  Security Team
-  Highly organised
-  Documented process for Security Advisories and Updates
-  Thousands of maintainers, users and experts
-  Support: Drupal 6/7, Core & Contributed Modules

KEEP YOUR

DRUPAL WEBSITE

SECURE 2

SECURITY IS A PROCESS

NOT AN EVENT

•  FROM REPORTED ISSUE TO SECURITY UPDATE

A DRUPAL SECURITY RELEASE

YOU’RE SAFE UNTIL RELEASE SECURITY UPDATE

PRIVATE DISCLOSURE

UPDATES	

Always stay up to date
-  Keep up with latest security releases

Update Workflow
-  Hacked module + diff
-  Drush up

KNOW WHEN AN UPDATE IS NEEDED

UPDATE MANAGER

INSIGHT INTO HEALTH OF YOUR DRUPAL WEBSITE
STATUS MONITORING

Tools
-  Droptor.com (https://drupal.org/project/droptor)
-  Acquia Insight (https://drupal.org/project/

acquia_connector)
-  Nagios (https://drupal.org/project/nagios)
-  Drupalmonitor.com (https://drupal.org/project/

drupalmonitor)
-  …

BUILD A SECURE

 DRUPAL WEBSITE 3

CONTRIBUTED

MODULES

CONTRIBUTED MODULES

Quality assurance
-  Usage
-  Number of open issues
-  Closed/Open ratio
-  Response time
	

Good quality usually means good security	
	
Manual code reviews for less used modules	
	
	

UPDATES	

Always stay up to date
-  Keep up with latest security releases

Update Workflow
-  Hacked module + diff
-  Drush up

PATCHES	

Contrib patches	
Read the entire issue

	
	
Commit custom patches	

Help out	
Feedback from other users (maintainers)	
Patch might get commited	

	
	 Patch management	

Move module to patched	
Create a patches.txt	
Keep patches	

	
	

CUSTOM

MODULES

SECURITY PYRAMID	

Menu & Node Access	

Form API	

DB API	

Theme	

	 	 	

HACKS
AND HOW TO PREVENT THEM

SQL INJECTION	

"SELECT * FROM user WHERE name = '$name'"	
	
"SELECT * FROM user WHERE name = 'Robert'; DROP TABLE students;'"	
	
	

h4p://xkcd.com/327/	

SQL INJECTION
	

Placeholders	
	
	 db_query(“SELECT * FROM users WHERE name = :user”, array(':user' => $user);	
	
	

Dynamic Queries	
	
	
	
$query = db_select('user', 'u')	
 ->fields('u')	
 ->where('name', $user)	
 ->execute();	

XSS (cross site scripting)	
EXECUTING ABRITRARY JAVASCRIPT CODE ON THE PAGE

XSS (cross site scripting)	
User Input	
	
	 Title	

Body	
Log message	
Url	
Post	
User-Agent	
Headers	
	
	

XSS (cross site scripting)	
Validate forms	
	
	 User input should never contain javascript	
	
	

Form api	
	
	
	
Never use $_POST variables	
$form_state['values']	
	
Form caching	

XSS (cross site scripting)	

Input formats	
Never use full_html	
	
	

Filter Functions	
	
	
	
	
	

check_url()	
check_plain()	
check_markup()	
filter_xss()	

XSS (cross site scripting)	

h4p://drupalscout.com/knowledge-‐base/drupal-‐text-‐filtering-‐cheat-‐sheet-‐drupal-‐6	

XSS (cross site scripting)	

Functions	
	
	 t()	
 	
l()

drupal_set_title()	
	
	

	
@var => plain text	
%var => plain text	
!var => full html!	

CSRF (cross site request forgery)	
Taking action without confirming intent	
	
	

Delete user 1	
	
	 Image Tag	
	
	
	
	

A hacker posts a comment to the administrator.	
When the administrator views the image, user 1 gets deleted	
	
	

CSRF (cross site request forgery)	
Token (aka Nonce)	
	
	

ACCESS BYPASS	
VIEW CONTENT A USER IS NOT SUPPOSED TO

ACCESS BYPASS	

View content a user is not supposed to	
	
	

$query = db_select('node', 'n')->fields('n');	
Also shows nodes that user doesn't have acces to	
	
	

$query->addTag('node_access')	
	
	
	
Rewrite the query based on the node_access table	

ACCESS BYPASS	

Bad custom caching	
	
	
Administrator visits a block listing nodes.	
The block gets cached	
	
The cached block with all nodes is shown to the anonymous user	
	
Add role id to custom caching	

ACCESS BYPASS	

Rabbit_hole module	
	
	
Rabbit Hole is a module that adds the ability to control what should happen
when an entity is being viewed at its own page.

Page manager can do the same.	

Field access	
	
	
	
$form['#access'] = custom_access_callback();	

Menu access	
	
	
	
$item['access callback'] = 'custom_access_callback',	

CORRECT USE OF API	
Form API	

Validation
Form state
Drupal_valid_token

	
	 DB API	

db_select, db_insert, placeholders	
$query->addTag(‘node_access’);	

	
	 Filter	

check_url, check_plain, check_markup, filter_xss, …	
t(), l(), drupal_set_title(), …	

	
	

THEMES

THEMES	

Themer not responsible	
	
	 Preprocess functions	
	
	

CONFIGURATION

PERMISSIONS
	

Permission management	
	
	 If Joe from advertising can give the full html filter format to anonymous user,
don't bother to think about security	
	
	

Split up permissions	
	
	 The default permissions don't cover every use case	
	
	

PERMISSIONS
	

FILTER FORMATS	

Never use full_html	
	
	 Use filtered_html instead.	

	
	

Never use phpfilter	
	
	 Use a custom module for code	

Versioning	
Bad performance (eval)	
	
	

CHECKLIST

CHECKLIST	

Never use	

full_html
Php filter	
	
	

Permissions	
	
	
	
	
	

Trusted users only
Split up permissions
	

API
	
	
	
	
	
	

Preprocess functions
check_plain, filter_xss
DB API
Form API
Tokens
Menu/Node Access
	

GREAT	

HOW ABOUT DRUPAL 8?

FURTHER READING

FURTHER READING	

Books	
Cracking Drupal !!	
Pro Drupal Development

Online	
https://drupal.org/writing-secure-code	
https://drupal.org/node/360052	
http://munich2012.drupal.org/program/sessions/think-hacker-secure-drupal-code.html	
http://drupalscout.com/knowledge-base	

Video	
How to avoid All your base are belong to us (drupalcon Denver)	

	
	

